Aircraft Vortex Generators – The Nacelle Strakes

Figure 1: Structured multi-block meshing for aircraft vortex generators – the nacelle strakes.

1100 words / 5 minutes read

Introduction

In modern transport aircraft, underwing engine nacelle installation is the most common design choice. Here, the engine nacelles which are tightly coupled with the wing have a huge impact on the maximum lift and stall angle of the wing. With the usage of larger by-pass ratio engines over the years, the adverse effects of the nacelle on the wing’s performance have increased dramatically, especially so when the high lift devices are deployed.

The nacelles hamper the wing’s desired performance by triggering premature massive flow separation on the main element and decrease the CL_max and stall angle. We cover more of this is in our earlier article Engine Nacelle Aerodynamics.

In order to attenuate the negative influence of nacelle, most aircraft manufacturers employ vortex generators called strakes or more popularly known as chines at appropriate locations on the nacelle.

Nacelle strakes are small delta-shaped or triangular panel sheets positioned strategically on the nacelle to induce longitudinal vortices. In short –  vortex generators mounted on nacelles are called strakes.

Usually, a pair of strakes are mounted on the nacelles to generate additional vortices to control the flow separation on the wing. Depending on the mounting location and the nacelle-pylon-wing flow field, the generated strake vortices can avoid the generation of slower nacelle vortex or sometimes even interact with nacelle vortex and increase their axial core speed. Thus they affect the position and strength of the installation vortices leading to an increase in maximum achievable lift. Since strakes directly influence the wing’s lift generation capabilities, their design demands careful attention.

Aircraft vortex generators: Single strake and Double strake
Figure 2: a. Aircraft vortex generators: Single strake. b. Double strake. Image source Ref [1].

Effectiveness of strake installation

For underwing nacelle configurations without strakes, at alphas near to stall, a large zone of low energy flow gets set above the main wing. The creation of this low energy zone is due to the nacelle blocking the flow from passing over the upper surface of the wing at high alphas. Any further increase in the angle of attack results in premature flow separation.

Reduction in upwash flow due to nacelle strakes: Strake off. Strakes on.
Figure 3: Surface oil flow visualization. Reduction in upwash flow. a. Strake off. b. Strakes on. Images source Ref [3].
When strakes are installed, the flow field is made more conducive for achieving higher lift by two mechanisms. Firstly, the nacelle strakes reduce the nacelle upwash and thereby relieve the adverse flow effects at the wing-pylon intersection. Figure 3 and 4 shows the reduction in upwash and the reduction in cross-flow separation on the nacelle near the pylon junction.

Aircraft vortex generators: Nacelle strakes particle traces
Figure 4: Aircraft vortex generators: Nacelle strakes particle traces. Image source Ref [3].
By a second mechanism, the strakes vortices provide a downwash on the upper surface of the wing which energizes the boundary layer and eliminates the low energy zone. This happens as the strake vortex with high kinetic energy passes through the low energy zone and the neighboring high total pressure air rushes into the low energy zone. In this way, the flow gets reenergized and the flow separation gets delayed. This positive effect of strake installation can clearly be seen in Figure 5. For an alpha beyond stall, the configuration without strake gets stalled, while in the configuration with strake, the flow separation is suppressed and the stall is delayed.

Total pressure coefficient contours: Without strake, With strake
Figure 5: Total pressure coefficient contours. a. Without strake. b. With strake. Image source Ref [4].
This positive effect of strake installation can also be seen in the Cp distribution, as shown in Figure 6. Here we can notice the elimination of flow separation on the upper surface of the main wing and the flap with the strakes mounted. As an outcome, the lift on the main wing and flap is recovered. Further, the maximum lift is enhanced and the stall is delayed. Studies show that nearly 60 to 70% loss in maximum lift can be recovered and an improvement in lift coefficient by 0.3 and stall angle by 3 degrees is possible by using strakes.

Nacelle strakes: Cp distribution at 35% spanwise station
Figure 6: Cp distribution at 35% spanwise station. Image source Ref [4].
In one study, usage of a single strake showed improvement in the stall angle by 1 degree but without any larger change in maximum lift. However, adding another strake was observed to increases the maximum lift from 2.26 to 2.3. When a third strake on the nacelle lip was introduced, the maximum lift became 2.34 and the stall angle further increased by 1 degree.

Parametric design of nacelle strake

The effectiveness of the strakes is directly related to the strake’s geometry and installation location. The strength and trajectory of the strake vortex depend on the strake area, deflection angle, axial position, and azimuth location.

Parametric variants of nacelle strakes: Variants generated based on changing axial position and area
Figure 7: Parametric variants of nacelle strakes. Variants generated based on changing axial position and area. Image source Ref [4].
Figure 7 shows a parametric study where the axial location and the area were varied. Strake 2 is observed to achieve higher lift compared to other configurations. Strake 2, 1, and 4 have the same area, but their axial positions are sequentially increased from the nacelle’s trailing edge. As can be observed in Figure 8a, the maximum lift coefficient also decreases in the same order. What this implies is that strakes axial location is a key factor in determining the stall-delay capabilities of strakes. The closer the strake placement to the nacelle trailing edge, the higher is the achievable lift coefficient.

Also, strake 2 and strake 3 have the same exact position, but strake 3 has an area that is two-thirds that of strake 2. Since the location is the same, there is hardly any difference in lift coefficients between strake 2 and 3, before stall. However, after the stall, the strake with a smaller area (strake 3) produces an abrupt drop in lift coefficient.

vortex generators: CL vs alpha plot, Total pressure coefficient contours for different strakes geometries
Figure 8: a. CL vs alpha plot. b. Total pressure coefficient contours for different strakes geometries. Image source Ref [4].
From Figure 8b, we can observe that strake 4 is least effective in controlling the flow. Careful observation reveals that the vortex generated by strake 2 is strongest among all while that from strake 4 is the weakest. From Figures 8a and 8b we can conclude that the strength of the strake vortex is another key factor that affects the strake’s performance. And there is a direct correlation between the strake vortex axial strength and its installation location.

vortex generators: Surface streamlines around different strake variants
Figure 9: Surface streamlines around different strake variants. Image source Ref [4].
Studies of the local flow fields using surface streamlines reveal that the circumferential velocity component decreases when the distance between the strake and the nacelle trailing edge increases. This means the strength of the strake vortex is determined by the strake’s local angle of attack. It is for this reason that, strake 2 vortex is strongest while the strake 4 vortex is weakest.

With these observations, we can conclude that the axial positioning of the strake determines the circumferential component of the flow, which in turn determines the strake’s local angle of attack. For a fixed azimuth positioning, the local alpha is a key factor influencing the strength of the vortex. In turn, strake’s vortex strength is a key factor in strake’s effectiveness in delaying the stall.

aircraft vortex generators - the nacelle strakes, Gridpro structured multiblock grids
Figure 10: Multi-block surface mesh using GridPro on the nacelle in the near vicinity of the strakes.
aircraft vortex generators - the nacelle strakes, multi-block mesh
Figure 11: Multi-block structured surface mesh on the strakes using GridPro.

Parting thoughts

Even though aircraft vortex generators, the nacelle strakes are proven devices to enhance lift for underwing mounted nacelle configurations, they are observed to be less effective for larger UHBR nacelles. For larger bypass ratio engines, they are unable to energize the flow sufficiently and make the flow remained attached to the wing surface. For such nacelles, researchers are working on developing active flow control devices such as pulsed jet blowing to control flow separation.

Nevertheless, strakes which are successfully deployed by all aircraft manufacturers around the world for many decades, will continue to be in use for small and medium-sized aircraft because of their simplicity, cost-effectiveness, and more importantly for their effectiveness in controlling the flow.

Further Reading

  1. Engine Nacelle Aerodynamics
  2. Role of Vortex Generators in Diffuser S-Ducts of Aircraft

References

1. “Modelling the aerodynamics of propulsive system integration at cruise and high-lift conditions”, Thierry Sibilli, PhD Academic Year: 2011-2012, Cranfield University.

2. “CFD Prediciton of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European project EUROLIFT II”, H. Frhr. v. Geyr et al, Second Symposium “Simulation of Wing and Nacelle Stall”, June 22nd – 23rd, 2010, Braunschweig, Germany.

3. “Navier-Stokes Analysis of a High Wing Transport High-Lift Configuration With Externally Blown Flaps”, Jeffrey P. Slotnick et al, NASA.

4. “Numerical Research of the Nacelle Strake on a Civil jet“, Wensheng Zhang et al, 28TH International Congress of the Aeronautical Sciences, ICAS 2012.

Twitter
Visit Us
Follow Me
YouTube
LinkedIn
Share

Subscribe To GridPro Blog

By subscribing, you'll receive every new post in your inbox. Awesome!

Leave a Reply

Your email address will not be published. Required fields are marked *