Automation of Hexahedral Meshing for Scroll Compressors

Figure 1: Structured multi-block mesh for scroll compressors.

1167 words / 5 minutes read

Developing a three-dimensional mesh of a scroll compressor for reliable Computational Fluid Dynamics (CFD) Analysis is challenging. The challenges not only demand an automated meshing strategy but also a high-quality structured hexahedral mesh for accurate CFD results in a shorter turnaround time.

Introduction

The geometric complexities of Meshing Scroll Compressors discussed in our previous article give us a window into the need for creating a high-quality structured mesh of scroll compressors.

A good mesher should handle the following challenges in a positive displacement machine:

  • The continuously deforming pocket volume.
  • Since its a complex and time-dependent fluid dynamic phenomena. The mesher should be able to accurately “follow” the deformation imposed by the machine moving part without losing the mesh quality.
  • The mesh should not suffer quality decay, or have uncontrolled mesh refinements and mesh collapses near contact points between the stator and moving parts, etc.
  • Should offer higher accuracy of numerical simulations and the short simulation turn-around time.

Meshing Strategy

The scroll compressor fluid mesh region on a given plane is a helical passage, with varying thickness, expanding, and contracting based on the crank angle and the fluid domain is topologically a rectangular passage. So we use the same approach as that of meshing a rectangle for the Scroll Compressor.

scroll compressor structured mesh blocking: Blocking for a linear and curved rectangular passage.
Figure 2: Blocking for a linear and curved rectangular passage.
Animation video 1: Block creation by sweeping in GridPro.

Mesh Topology

One of the main obstacles for simulation in scroll compressors is the generation process of dynamic mesh in fluid domains, especially in the region of flank clearance. The topology based approach offers a perfect solution for such scenarios. Primarily because the deforming fluid domain in the Scroll compressor does not change the topology of the fluid region.

Animation video 2: Mesh at every time step for a scroll compressor.

Advantages of Topology based Meshing:

  • At each time step, when the orbiting rotor moves to a new position, the new mesh is generated without any user intervention.
Animation video 3: Mesh in the Discharge Chamber of the Scroll Compressor.
  • The block built becomes a template for a new variation of the scroll rotors, this makes it ideal for optimization and even meshing variable thickness scroll compressors.
  • Since meshes share the same topology, i.e. the number of blocks and their connectivity and cells remain the same, which avoids the need for interpolation of results. The computational effort is significantly reduced and the mesh quality is high, leading to reliable CFD analysis.

Flank Clearance and it’s Meshing Needs

The flank clearance could reduce to as low as 0.05 mm and an adequate resolution of the flank clearance with low skewness is the key reason for better prediction of performance by structured meshes when compared to unstructured meshes.

Animation video 4: Mesh in the flank clearance at different scroll rotor positions. 12 layers of cells finely discretize the narrow flank clearance.

The dynamic boundary conforming algorithm of GridPro moves the blocks into the compressed space automatically and generates the mesh. The smoother ensures that the mesh has a homogenous mesh distribution and is orthogonal. Orthogonality is another important mesh quality metric that sets structured meshes against moving mesh approaches. Orthogonality improves the numerical accuracy, stability of the solution and prevents numerical diffusion.

Solid Scroll Meshing for FSI

Understanding the heat transfer towards and inside the solid components is important since the heat transfer influences the leakage gap size. Heat transfer analysis is especially required in vacuum pumps where the fluid has low densities and low mass flow rates.

Structure multi-block mesh for the solid and fluid zone in a scroll compressor.
Figure 4: Structure Hexahedral mesh for the solid and fluid zone in a scroll compressor.

 

One of the major drawbacks of scroll compressors is the high working temperature (maximum temperature of up to 250 degrees Celsius is reported [Ref 3]). The higher temperatures increase excessively the thermal expansion of scroll spirals, leading to significant increments of internal leakages and thereby affecting the efficiency.

A mesh created for conjugate heat transfer has to model the in-between compression chamber, the scrolls and the convective boundary condition at the outer surface of the scrolls. This type of mesh enables to get consistent temperatures in the solids, to calculate the thermal deformation of the scrolls.

Automation and Optimization of Scroll Compressor

Even though scroll compressors enjoy a high volumetric efficiency in the range of 80-95%, there is still room for improvements. Optimization of the geometric parameters is necessary to reduce the performance degradation due to leakage flows in radial and axial clearances.

CFD as a design tool plays a significant role in optimizing scroll geometry. The major advantage of a 3D CFD simulation combined with fluid-structure interaction (FSI) is that the 3D geometry effect is directly considered. This makes CFD analysis highly suitable for the optimization of the design.

GridPro provides an excellent platform for automating hexahedral meshing through because of its working principle and the python based API.

The key features are:

  • Quick set up of a CFD model from CAD geometry.
  • Parametric design of geometry can be incorporated into the same blocking and can be used even for variable thickness scrolls.
  • The mesh at each time interval is of high quality with orthogonal cells and even distribution.
  • The other advantage of this strategy is that it is respectful of the space conservation law while conserving mass, momentum, energy, and species.

Since GridPro offers both process automation through scripting and API level automation. The automation can either be triggered outside of a CAD environment or inside the CAD environment.

This flexibility provides companies and researchers to develop full-scale meshing automation with GridPro while the user only interacts with CAD / CFD or any software connector platform.

GridPro coupled with CAESES software connector to generate meshes automatically for every change in geometry.
Figure 5: GridPro coupled with CAESES software connector to generate meshes automatically for every change in geometry.

Parting Remarks

The generation of a structured mesh for the entire scroll domains, including the port region, is a very challenging task. It could be very difficult to model narrow gaps and complex features of the geometry. However, with GridPro’s template-based approach and dynamic boundary conforming technology the setup is reduced to a few specifications and the user can develop his own automation module for structured hexahedral meshing.

If scroll compressor meshing is your need and you are looking out for solutions. Feel free to reach out to us at: support@gridpro.com

Contact GridPro

References

1.”Analysis of the Inner Fluid-Dynamics of Scroll Compressors and Comparison between CFD Numerical and Modelling Approaches“, Giovanna Cavazzini et al, Advances in Energy Research: 2nd Edition, 2021.

2. “Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment”, Ettore Fadiga et al, Energies 2020, 13, 666.

3. “Waste heat recovery for commercial vehicles with a Rankine process“, Seher, D.; Lengenfelder, T.; Gerhardt, J.; Eisenmenger, N.; Hackner, M.; Krinn, I., In Proceedings of the 21st Aachen Colloquium on Automobile and Engine Technology, Aachen, Germany, 8–10 October 2012; pp. 7–9.

Twitter
Visit Us
Follow Me
YouTube
LinkedIn
Share

Subscribe To GridPro Blog

By subscribing, you'll receive every new post in your inbox. Awesome!

Leave a Reply

Your email address will not be published. Required fields are marked *